La sombra de la pirámide la cual mide 40m , así como un bastón de 1,2m de altura y 3m de sombra ¿Cuál es la altura de la pirámide?

Respuesta :

Semejanza de triángulos

La sombra del bastón y su altura junto con la altura de la pirámide y su sombra crean una semejanza , esto porque sus lado homólogos son proporciónales del uno al otro.

Algo lógico que hace que parezca una proporción es sobre la sombra y altura, entre más sombras menos altura. Es decir que siempre la sombra es más grande que la medida de su altura.

Por semejanza tenemos lo siguiente:

[tex]\sf{\dfrac{Sombra_1}{Altura_1}= \dfrac{Sombra _2}{Altura _2}}...Realizamos \ algunos \ despejes \ en \ la \ formula [/tex]

[tex]\sf{Sombra_1*Altura_2= Sombra_2 *Altura_1} [/tex]

La altura 1 seria la pirámide, la altura dos es la del bastón y esto es lo mismo para las sombras.

Sustiuimos:

[tex]\sf{40m*1,2= 3x}... Despejando \ para \ x [/tex]

[tex]\sf{\dfrac{40m*1,2}{3}= x} [/tex]

  • Multiplicamos la parte de arriba de nuestra fracción:

[tex]\sf{\dfrac{48m}{3}= x} [/tex]

Dividimos:

[tex]\sf{16m= x} [/tex]

La altura de la pirámide es igual a 16 metros