1. Una fuente circular está rodeada de un zócalo de mármol. El diámetro de la fuente es de 10m y el zócalo tiene 1m de ancho. ¿Cuál es la superficie recubierta por mármol?

2. Una caja de melocotones tiene capacidad para docena y media de piezas. Cada pieza pesa aprox 220g. La caja vacía pesa 350g. Calcula cuánto pesa la caja llena. Exprésalo en Kg.

Xfa es urgentee


Respuesta :

Mery,
Vamos a resolver paso a paso
1)
El zócalo de marmol es una corona circular de un metro de ancho.
Caracterpisticas del sistema:
         Radios:
                    Fuente = 10/2 = 5 m
                    Circunferencia externa del zócalo: 5 + 1 = 6 m
        Superficies:
                    Círculo = [tex]2 \pi r^{2} [/tex]
                    Fuente = [tex]2 \pi 5^{2} [/tex]
                    Fuente + zócalo = [tex]2 \pi 6^{2} [/tex]
                    Zócalo = (fuente + zócalo) - fuente = [tex]2 \pi 6^{2} -2 \pi 5^{2} [/tex]
                               = [tex]2 \pi ( 6^{2} - 5^{2} )[/tex]
                               = [tex]2(3.1416)(36-25)=69.1152[/tex] [tex] m^{2} [/tex]
Superficie recubierta por mármol = [tex]69.1152 [/tex] [tex] m^{2} [/tex]

2)
     1 docena y media = 12 + 6 = 18 piezas
      Regla de tres simple:
             1 pieza                        220 gr 
             18                                 P
                         P = 18 x 220 = 3 960 ga
Peso de la caja llena = peso producto + peso caja
                                  = 3 960 + 350
                                  = 4 310 gr
1 kg = 1 000 gr
     Regla de tres simple
               1 kg                 1 000 gr
                 K                    4 310
                       K = (4 310)/(1 000)
                          = 4.310
La caja llena pesa 4.310 kg


Respuesta:

65,94cm2

Explicación paso a paso:

Primero calculamos la superficie de la fuente: (5 cm de radio)

π por r 2= 3,14 por 25 igual a 78,5 cm2

luego calculamos la superficie de la fuente con el zocalo (6cm de radio)

π por r 2= 3,14 por 36 igual a 113,04cm2

Para obtener las solución

Resto los dos resultados para obtener solamente la superficie del zocalo:

113,04 menos 78,5 igual a 65,96 cm2

Para determinar la superficie de una corona circular, se tiene que encontrar la diferencia entre las áreas de los dos círculos con-céntricos: el mayor con radio R y el menor con radio r.