Respuesta :
Antes de nada decir que los logaritmos están definidos para números reales mayores que 0 necesariamente, y la base puede ser cualquier número que no sea 0 ó 1. (Más comodamente diría que positivos, pues los negativos como base pueden dar problemas).
log[n](1) = 0
El logaritmo de 1 en cualquier base positiva distinta de cero o uno es 0.
log[a](a) = 1
El logaritmo de un número en la base de ese mismo número es siempre 1.
log(ab) = log a + log b
El logaritmo de un producto es igual a la suma de los logaritmos de los factores.
log(a/b) = log a - log b
El logaritmo de un cociente es igual a la diferencia de los logaritmos del dividendo y el divisor.
log(aⁿ) = n log a
El logaritmo de una potencia es igual al producto del exponente y el logaritmo de la base.
log(ⁿ√a) = (log a)/n
El logaritmo de una raíz es igual al cociente entre el logaritmo del radicando y el índice.
log[b](a) = log[x](a)/log[x](b)
El logaritmo de a en base b es igual al cociente de los logaritmos en base aleatoria de a y b.
log[n](1) = 0
El logaritmo de 1 en cualquier base positiva distinta de cero o uno es 0.
log[a](a) = 1
El logaritmo de un número en la base de ese mismo número es siempre 1.
log(ab) = log a + log b
El logaritmo de un producto es igual a la suma de los logaritmos de los factores.
log(a/b) = log a - log b
El logaritmo de un cociente es igual a la diferencia de los logaritmos del dividendo y el divisor.
log(aⁿ) = n log a
El logaritmo de una potencia es igual al producto del exponente y el logaritmo de la base.
log(ⁿ√a) = (log a)/n
El logaritmo de una raíz es igual al cociente entre el logaritmo del radicando y el índice.
log[b](a) = log[x](a)/log[x](b)
El logaritmo de a en base b es igual al cociente de los logaritmos en base aleatoria de a y b.