Respuesta :
Descomponemos el vector OM en el sistema cartesiano.
x = 2 t
y = 4 t (t - 1) = 4 t² - 4 t
1) Las dos ecuaciones representan la forma paramétrica de la trayectoria. Se encuentra la forma cartesiana eliminando el parámetro t
t = x / 2; reemplazamos en y:
y = 4 (x / 2)² - 4 x/2 = x² - 2 x
Es un arco de parábola. Adjunto gráfico para t > 0, en escalas adecuadas para una mejor vista.
2) la velocidad es la derivada de la posición:
Vx = 2
Vy = 8 t - 4
3) |V| = √[2² + (8 t - 4)²] = √(64 t² - 64 t + 20)
4) La aceleración es la derivada de la velocidad.
ax = 0
ay = 8 = constante
|a| = 8
Es un vector vertical de módulo constante.
5) Es simple la solución para el vértice de la parábola.
Componente tangencial: ax = 0
Componente normal: ay = 8 = constante
Par otros puntos debemos hallar las rectas tangente y normal a la parábola. Luego descomponer el vector vertical en esas direcciones
Si at y an son las direcciones de la aceleraciones tangencial y normal se cumplirá par cualquier instante:
a = ay = 8 = √(at² + an²)
Debemos hallar además el radio de curvatura de la parábola en cada punto.
Saludos.