Respuesta :
s una progresion aritmetica, siendo el primer termino 66, la razon 11 y el numero de términos 72
Tenemos que calcular el ultimo termino, el A72
A72 = 66 +( 72 -1) 11 = 66 + ( 71 • 11) = 66 + 781 = 847
S = [ 72 ( 66 + 847) ] : 2 = [ 72 • 913 ] : 2 = 65736 : 2 = 32868
He utilizado la formula del ultimo termino An = A1 + ( n - 1 ) d
S = [ n ( A1 + An )] : 2
Siendo A1 el primer termino, An el ultimo termino, n el numero de términos y d la razon.
Tenemos que calcular el ultimo termino, el A72
A72 = 66 +( 72 -1) 11 = 66 + ( 71 • 11) = 66 + 781 = 847
S = [ 72 ( 66 + 847) ] : 2 = [ 72 • 913 ] : 2 = 65736 : 2 = 32868
He utilizado la formula del ultimo termino An = A1 + ( n - 1 ) d
S = [ n ( A1 + An )] : 2
Siendo A1 el primer termino, An el ultimo termino, n el numero de términos y d la razon.
Respuesta:
Explicación paso a paso:
N= 72
r= 11
a1= 77 (como dice los primeros multiplos de 11 QUE SIGUEN A 66 por lo que el sgte numero es 77)
Y se aplica la formula
An= a1 + (n-1) . r
A72= 77 + (72-1) . 11
A72= 77 + 781
A72= 858
Y ahi se aplica la formula de la suma de la P.A
Que su formula es
S= 2a1 + (n-1) . r .n=
__________
2
Que el resultado es= 33660