Respuesta :
⭐Solución:
Cada 30 horas vuelven a coincidir ambos relojes.
¿Cómo y por qué? Encontraremos cuanto coinciden ambos relojes, calculando el mínimo común múltiplos entre las tres cantidades, 60, 150 y 360 minutos. Descomponemos en factores primos:
60 = 2 × 2 × 3 × 5 = 2² × 3 × 5
150 = 3 × 2 × 5 × 5 = 3 × 2 × 5²
360 = 2 × 2 × 2 × 5 × 3 × 3 = 2³ × 5 × 3²
MCM(60,150,360) = 5² × 2³ × 3² = 1800 minutos
Para el MCM se toman los números comunes y no comunes con su menor exponente. Por lo cual coinciden cada 1800 minutos, ésto representa en horas:
[tex]1800min* \frac{1hr}{60min}=30horas [/tex]
¿Cómo y por qué? Encontraremos cuanto coinciden ambos relojes, calculando el mínimo común múltiplos entre las tres cantidades, 60, 150 y 360 minutos. Descomponemos en factores primos:
60 = 2 × 2 × 3 × 5 = 2² × 3 × 5
150 = 3 × 2 × 5 × 5 = 3 × 2 × 5²
360 = 2 × 2 × 2 × 5 × 3 × 3 = 2³ × 5 × 3²
MCM(60,150,360) = 5² × 2³ × 3² = 1800 minutos
Para el MCM se toman los números comunes y no comunes con su menor exponente. Por lo cual coinciden cada 1800 minutos, ésto representa en horas:
[tex]1800min* \frac{1hr}{60min}=30horas [/tex]
Respuesta:
[cada 30 horas deben de pasar]
Explicación paso a paso:
hallar el mcm de 60,150 y 360
>que es 1800
>1800 se lo divide entre 60=30
>A las 15 h pm del otro dia volveran a dar la señal otra vez juntos